

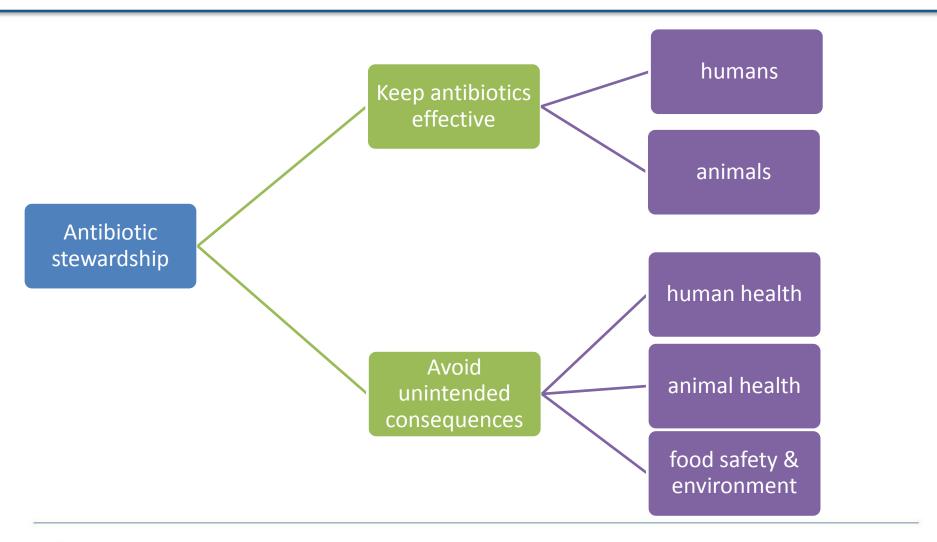
Developing New Animal Pharma Products – Relevance to antibiotic stewardship in animal agriculture

Karin Hoelzer, DVM, Ph.D.

September 7, 2018

• The role of antibiotic alternatives in stewardship

• Examples of alternatives reducing need for antibiotics

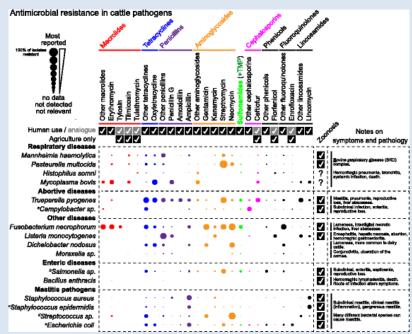

Challenges & opportunities of current alternatives

• The role of antibiotic alternatives in stewardship

• Examples of alternatives reducing need for antibiotics

• Challenges & opportunities of current alternatives

Animal pharma products are important stewardship tools



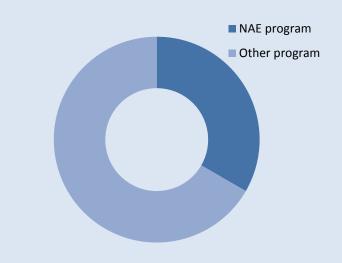
Antimicrobial resistance threatens the efficacy of antibiotics

AMR is a threat to human health, veterinary medicine & animal agriculture

- At least 2 million antibiotic resistant infections & 23,000 resulting deaths / year (CDC estimates)
- Emergence of AMR in companion animal pathogens after antibiotic treatments (e.g., tertiary teaching hospitals) well-documented
- Studies have demonstrated emergence of AMR in pathogens from livestock species (although data availability more limited)

Source:

Cameron, A., McAllister, T.A., 2016. Antimicrobial usage and resistance in beef production. *Journal of Animal Science and Biotechnology* 7, 68.



Antibiotic use in animal agriculture is becoming more limited

Antibiotic use restrictions are on the rise in the U.S. and globally, creating a growing demand for alternatives

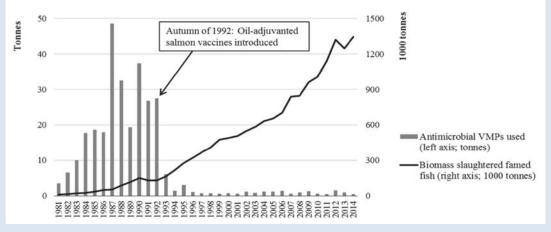
- Implementation of FDA policy eliminated growth promotion uses & placed feed and water uses under veterinary oversight
- Market-based antibiotic use restrictions (e.g., 'no antibiotics ever' policies) are on the rise
- Countries such as Brazil & China have limited colistin use in animal agriculture
- The World Health Organization has issued guidelines for the use of antibiotics in animal agriculture

In December 2016, 33 percent of U.S. broiler chicken were in NAE programs

Source:

https://www.wattagnet.com/articles/30116-one-third-of-us-broilers-raised-antibiotic-free

• The role of antibiotic alternatives in stewardship


• Examples of alternatives reducing need for antibiotics

• Challenges & opportunities of current alternatives

Vaccines effectively reduce antibiotic use & improve productivity

Proof-of-concept studies have demonstrated value of vaccines as antibiotic alternatives

- Experts consider vaccines feasible
 & effective antibiotic alternatives
- Vaccines can reduced antibiotic use (e.g., in salmon, swine and poultry)
- Studies have demonstrated vaccination can lead to improvements in productivity (e.g., mortality, daily weight gains) and be cost-effective

Source:

Source:

Hoelzer, K., Bielke, L., Blake, D.P., Cox, E., Cutting, S.M., et al. Vet Res. 2018: 49:64; and Hoelzer, K., Bielke, L., Blake, D.P., Cox, E., Cutting, S.M., et al. Vet. Res. 2018 49:70.

Several other alternatives besides vaccines also hold promise

Growth promotion & disease prevention alternatives

- More products have shown efficacy for growth promotion & disease prevention than for treatment
- Currently more products exist with proven efficacy for chicken than for other species
- Alternatives often have a narrower spectrum of action & lower efficacy than traditional antibiotics
- Efficacy often varies across trials for largely unknown reasons

Source:

 $http://www.pewtrusts.org/^\sim/media/assets/2017/07/alternatives_to_antibiotics_in_animal_agriculture.pdf$

		Cattle					
	Milk-fed calves	Dairy cows	Beef cattle	Swine	Chicken'	Turkey	
Probiotics	••	••	••0	•00	••		
Prebiotics	00		0	00		00	
Organic acids		00	00	•0	••	00	
In-feed enzymes		•	0	•0	••	•	
Antimicrobial peptides	00	00,0,	0	00	00		
Phytochemicals (e.g., essential oils)	000	0	0	00	•0	00	
Copper, zinc, and other heavy metals	© °	00"	●O"	•0	•	0	
Immune modulators	•	•*	•	000	00	00	
Vaccines	•	•	•	•"•	•	•	
Bacteriophages, endolysins, lysozyme, and other hydrolases	0	00		000	00	00	

- Growth promotion, strong scientific evidence for efficacy and commercially used
- Disease prevention, strong scientific evidence for efficacy and commercially used
- Disease treatment, strong scientific evidence for efficacy and commercially used
- Evidence suggesting lack of efficacy

- Growth promotion, some scientific evidence suggests potential efficacy
- Disease prevention, some scientific evidence suggests potential efficacy
- Disease treatment, some scientific evidence suggests potential efficacy

• The role of antibiotic alternatives in stewardship

• Examples of alternatives reducing need for antibiotics

Challenges & opportunities of current alternatives

Developing antibiotic alternatives has unique challenges

Alternatives are diverse & often more complex than antibiotics

- Promising antibiotic alternatives are a heterogeneous group of products
- Many alternative products consist of large molecules or complex mixtures of living organisms
- The mechanism of action varies across products & is in several cases poorly understood
- Producers will likely use multiple products together, with largely unknown & hard-to-predict results

Source:

 $http://www.pewtrusts.org/^{\prime}/media/assets/2017/07/alternatives_to_antibiotics_in_animal_agriculture.pdf$

The need for antibiotic alternatives is not adequately met

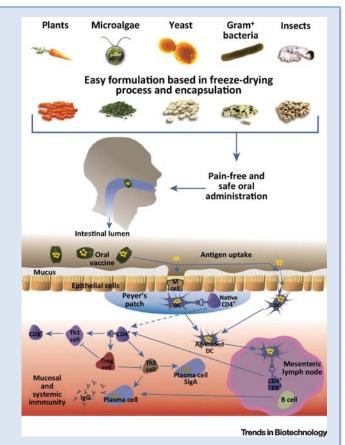
Finding alternatives for priority diseases is of key importance

- A few priority diseases drive the majority of antibiotic use
- Commercial vaccines are available for many priority diseases
- Many current, commercially-available vaccines have severe limitations
- Other promising alternative approaches exist but often require further research

	Priority diseases for broiler chickens			Disease-specific vaccines†			Other promising	
	Disease	Agent	Antibiotic use	Commercial availability	Major constraints	R&D priority	alternative approaches requiring more research [‡]	
	Necrotic enteritis	Bacterial toxin	High	Yes	Short-lasting and limited immunity Application inconvenient, no mass application	High	Phytochemicals Prebiotics and probiotics Immune modulators (e.g., egg yolk antibodies Antimicrobial peptides Substances that bind the bacterial toxin (e.g., clays) Bacteriophages	
Enteric diseases	Coccidiosis	Parasite, antibiotic use for secondary bacterial infection	High	Yes	No cross- protection across strains Current vaccines can cause disease	High	Essential oils Other phytochemicals (e.g., saponins)	
	Infectious bronchitis	Virus, antibiotic use for secondary bacterial infection	Medium	Yes	Protection across strains suboptimal Virus mutates rapidly	Medium		
Generalized infection	Escherichia coli	Bacterium, infection possibly secondary to other diseases (e.g., yolk sac infection)	High	Yes	Protection across strains suboptimal No vaccine for some primary conditions that predispose for secondary Escherichia coli	High		

Source:

 $http://www.pewtrusts.org/^\sim/media/assets/2017/07/alternatives_to_antibiotics_in_animal_agriculture. pdf$


Veterinary vaccines can become effective antibiotic alternatives

Scientific progress in 4 key areas can make vaccines effective antibiotic alternatives

- **Safety improvements** (*e.g.*, vectored vaccines & new adjuvants) to minimize unintended consequences
- **Efficacy improvements** (*e.g.*, combination/ recombinant vaccines & protocol optimization) to generate robust & durable protection against broad range of pathogens (including in very young animals)
- **Easier administration** (*e.g.*, new oral vaccination strategies & increased stability) to permit easy mass vaccination
- **Cost reductions** to make use economically feasible and cost-effective

Source:

Hoelzer, K., Bielke, L., Blake, D.P., Cox, E., Cutting, S.M., et al. Vet Res. 2018: 49:64; and Hoelzer, K., Bielke, L., Blake, D.P., Cox, E., Cutting, S.M., et al. Vet. Res. 2018 49:70.

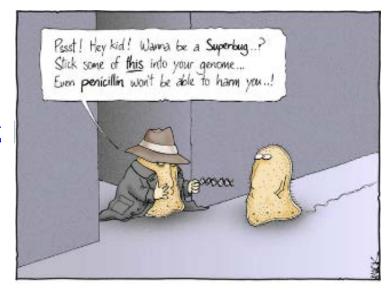
Source:

https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(15)00247-4

The role of antibiotic alternatives in stewardship

• Examples of alternatives reducing need for antibiotics

Challenges & opportunities of current alternatives


Summary & key take-home messages

Safe & effective alternatives are central stewardship tools Growing demand for safe & effective alternatives Vaccines & other alternatives reduce antibiotic need There is an unmet need for antibiotic alternatives Developing antibiotic alternatives poses challenges New research provides strategies for better alternatives

Contact me with questions & to learn more about our research

Karin Hoelzer, DVM, PhD

Senior Officer, Health Programs
The Pew Charitable Trusts
901 E Street, NW, Washington, DC 20004
p: 202-540-6986 | e: khoelzer@pewtrusts.org
www.pewtrusts.org

It was on a short-cut through the hospital kitchens that Albert was first approached by a member of the Antibiotic Resistance.

Source: http://journals.plos.org/plosbiology/article? id=10.1371/journal.pbio.0050112

