Agricultural N and P balances: What do they tell us?

Mark B. David University of Illinois Conference on Agricultural Productivity and the Environment March 12, 2015

What I will cover

- what goes into N and P balances
- Mississippi River Basin N and P balances
 - average balances 1997-2006
 - relationships to riverine transport
- field scale N balances
- Illinois N and P balances through 2014
- limitations of what balances can provide

Components of Nitrogen Mass Balances

- net nitrogen inputs (NNI or NANI)
 - = inputs outputs

inputs (deposition, fertilizer, fixation)

outputs (grain harvest - human and animal consumption)

- NNI is N available for leaching, denitrification, adding to N pools
- data from agricultural statistics, fertilizer industry, assumptions about N in various components

Nutrient Mass Balances

inputs

National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

+

- outputs

County Level N Analysis

- all counties in MRB
- 1997 to 2006 annual data on fertilizer, crops, animals, people, deposition
- 153 watersheds with winter & spring nitrate concentrations and loads
- predictive model from watersheds applied to all MRB counties

Annual N Fertilizer Applications

Fraction of County in Row Crops

Drainage by tiles and ditches

Linking N balances to N Export

- hydrology overwhelming factor
 - tile drainage, channelization
- can look at watershed N export as a fraction of net N inputs
 - most studies have found this to be about 25%
 - however in MRB we know it is larger in critical areas
 - can be > 100% in Illinois tile drained watersheds

Embarras River - Camargo

Embarras River

Water year

Major Mississippi Subbasins

Mississippi River Basin

Mississippi River Basin

Mississippi River Basin

Modeled January to June Nitrate Export

Uncertainty in N Balances

- N fertilizer (amounts, timing)
- crop coefficients
- biological N₂ fixation
- manure
- soil N pool changes (mineralization rates)
- denitrification

The impact of nitrogen source and crop rotation on nitrogen mass balances in the Mississippi River Basin

J. Blesh¹ and L. E. Drinkwater^{2,3}

¹Department of Crop and Soil Sciences, Cornell University, Ithaca, New York 14853 USA ²Department of Horticulture, Cornell University, Ithaca, New York 14853 USA

From Hong, Swaney, and Howarth (2013)

Figure 2. Map of 106 U.S. watersheds used in this study.

Illinois N budget through 2014

Components of Phosphorus Mass Balances

- net P inputs
 - = inputs outputs

inputs (fertilizer)

outputs (grain harvest - human and animal consumption)

- net indicates additions or removals from soil
- little P (relative to N) is lost to streams, but it is biologically important
- surface runoff and tile leaching

Illinois P budget through 2014

Final comments

- limitations in data available to construct balances
- balances useful in understanding nutrient flows, pool changes through time
- limitations in how they relate to nutrient losses
 - better for N than for P
 - tile drainage must be considered