Emerging Roles of Public and Private Agricultural Research in the United States

Keith Fuglie

Symposium on Research and Innovation Policies for Sustainable Productivity Growth in Agriculture Sept 19-20, 2017

Innovation in U.S. food and agriculture: Private R&D is rising while public is R&D falling

United States Department of Agriculture, Economic Research Service

Clarifying the roles of public and private R&D

- Framework for distinguishing public and private roles in an R&D system
- Evidence on how this system works in agriculture
- Challenges facing this system and evaluating its performance

Traditional Framework for Public and Private R&D

Vannevar Bush (1945) Science: The Endless Frontier

Considerations of commercial use

Stokes (1997) Pasteur's Quadrant: Basic Science and Technological Innovation

United States Department of Agriculture, Economic Research Service

Stokes (1997) Pasteur's Quadrant: Basic Science and Technological Innovation

United States Department of Agriculture, Economic Research Service

Ruttan (2001) *Technology, Growth and Development:* An Induced Innovation Perspective

Yes	Curiosity-inspired basic research (Bohr's Quadrant)	Use-inspired basic research (<i>Pasteur's Quadrant</i>)
Quest for		
understanding	Government-sponsored applied	
	research & technology	
	development	Industry-sponsored applied
No	(Rickover's Quadrant)	research & technology
	- Detense	development
	- Agricultural	(Edison's Quadrant)
	- Environmental	
	No	Yes

Considerations of commercial use

United States Department of Agriculture, Economic Research Service

The views expressed are those of the author(s) and should not be attributed to the Economic Research Service or USDA.

SD

Where does science policies fit in? USA Science & Technology Policies Initiatives

IPR for biological innovations	Technology transfer
Trade secrecy protectionGrew out of common lawImportant for hybrid seed	Bayh-Dole Act (1980) - Encouraged public institutions to patent and license inventions
Plant Patent Act (1930) - Established patents for ornamentals	Small Business Innovation Devel. Act (1982) - Designated federal extramural R&D to Small Businesses Innovation Research (SBIR)
Plant Variety Protection Act (1970, 1994) - Established plant breeders' rights with saved seed & research exemptions	National Cooperative Research Act (1984) - Loosened antitrust rules to encourage research consortia
<i>Diamond v. Chakrabarty</i> (1980) - Supreme Court ruled that biotech inventions are patentable	Federal Technology Transfer Act (1986) - Established the public-private Cooperative Research & Development Agreement (CRADA)

USDA

United States Department of Agriculture, Economic Research Service

Science policy within the Stokes-Ruttan Framework

United States Department of Agriculture, Economic Research Service

Public and private R&D have different roles in an innovation system

United States Department of Agriculture, Economic Research Service

Source: ERS (2016)

The views expressed are those of the author(s) and should not be attributed to the Economic Research Service or USDA.

ISDA

Within sub-sectors, public and private R&D focus on different parts of the innovation process

United States Department of Agriculture, Economic Research Service

The views expressed are those of the author(s) and should not be attributed to the Economic Research Service or USDA.

Source: Frey (2000)

Are public & private R&D complements or substitutes? Findings from empirical studies

- Studies may distinguish between "basic" and "applied" agricultural or life science R&D
- Most studies find public and private agricultural R&D to be complements
- Public "basic" R&D stimulates more private R&D
 - multiplier of 0.6 to 0.9 in case of agriculture R&D

Models of technology transfer

United States Department of Agriculture, Economic Research Service

Technology Transfer Within Stokes-Ruttan Framework

United States Department of Agriculture, Economic Research Service

USDA Technology Transfer Activity Since 1987

United States Department of Agriculture, Economic Research Service

Impact of new technology transfer mechanisms? -empirical evidence is thin

- Private "capture" of public goods?
 - Taxol (anticancer drug)
- Public "capture" of private goods?
 - Public R&D may duplicate industry research to capture patent royalties
- Does public-private R&D collaboration increase rate of productivity growth?
 - Little direct evidence, but collaboration does appear to raise *research* productivity (number of publications)
- Few examples of successful research consortia

Concluding comments

- Growth of private agricultural R&D
 - challenges some areas where public R&D has led
 - Increases potential for public-private collaboration
- Need new models for clarifying public and private roles in R&D
 - e.g. Stokes-Ruttan framework, but boundaries between quadrants are fuzzy
- Need new approaches for evaluating impact of public R&D and science policies on private R&D behavior

 difficult because information is often proprietary

Using United States Department of Agriculture, Economic Research Service The views expressed are those of the author(s) and should not be attributed to the Economic Research Service or USDA.